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ABSTRACT
Galaxy clusters exhibit a rich morphology during the early and intermediate stages of mass assembly, especially beyond their
boundary. A classification scheme based on shapefinders deduced from the Minkowski functionals is examined to fully account
for the morphological diversity of galaxy clusters, including relaxed and merging clusters, clusters fed by filamentary structures,
and cluster-pair bridges. These configurations are conveniently treated with idealized geometric models and analytical formulas,
some of which are novel. Examples from CLASH and LC2 clusters and observed cluster-pair bridges are discussed.
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1 IN T RO D U C T I O N

Morphology of galaxy clusters is an indicator of their state of
relaxation and can be used to infer their formation history and
evolution. As a result of the gravitational dynamics of dark and
luminous matter, relaxed galaxy clusters and their hosting dark
matter haloes have a triaxial shape (Limousin et al. 2013), with
tendency to prolateness over oblateness especially in their final stage
of evolution as assessed by high-resolution N-body simulations (e.g.
Bett et al. 2007; Macciò et al. 2007; Despali, Giocoli & Tormen 2014;
Bonamigo et al. 2015) and confirmed by X-ray, optical, Sunyaev–
Zel’dovich (SZ), and weak-lensing measurements (Cooray 2000; De
Filippis et al. 2005; Sereno et al. 2006, 2018b). The persistence of
this trend in the outskirts of clusters depends on their mass (Prada
et al. 2006), mass accretion rate (Diemer & Kravtsov 2014), and
assembly history (Dalal et al. 2008; Faltenbacher & White 2010;
More et al. 2016).

The three-dimensional shape of these structures is normally
described by the eigenvalues of the mass distribution or inertia tensors
and related parameters such as sphericity, elongation, ellipticity, pro-
lateness, and triaxiality (Springel, White & Hernquist 2004). These
statistics are well suited for dynamically evolved or poorly resolved
clusters; however, they cannot account for the rich morphology of
unrelaxed structures or beyond the virial radius shown by high-
quality imaging and spectroscopy. New instruments are opening
indeed a golden age for a multiwavelenth study of protoclusters,
merging clusters and their filamentary environment at both low
and high redshift. The clearest example in the local universe is
the Virgo cluster with its different substructures identified using
GUViCS (Boselli et al. 2014) and HyperLeda (Kim et al. 2016)
data. At intermediate and high redshift, some spectacular illustration

� E-mail: Carlo.Schimd@lam.fr

of rich structures are the outskirts of Abell 2744 probed by XMM–
Newton X-ray data (Eckert et al. 2015); the proto-clusters revealed
by Herschel-SPIRE from Planck candidates (Greenslade et al. 2018),
or combining VUDS and zCOSMOS-Deep data (Cucciati et al.
2018); the filaments bridging the cluster systems A399–A401 and
A3016–A3017, detected combining Planck data with ROSAT (Planck
Collaboration VIII 2013) or Chandra (Chon et al. 2019); the gaseous
and dusty bridge IRDC G333.73+0.37 (Veena et al. 2018); the
molecular filamentary structures around Centaurus, Abell S1101,
and RXJ1539.5 probed by ALMA and MUSE (Olivares et al. 2019);
and the multiple filaments within the SSA22 protocluster (Umehata
et al. 2019). Weak gravitational lensing analyses have been successful
in detecting the dense environment and the correlated dark matter
around the main cluster halo (Sereno et al. 2018a).

The increasingly large samples of haloes detected in optical
(Rykoff et al. 2014; Oguri et al. 2018; Maturi et al. 2019), X-
ray (Pierre et al. 2016), or SZ surveys (Bleem et al. 2015; Planck
Collaboration XXVII 2016) demand for flexible and reliable indi-
cators of morphology that can be applied to the full zoo of galaxy
clusters. A number of statistics, such as halo concentration, peak-
centroid shift, power ratio, axial ratio, and position angle, have been
considered to quantify the degree of regularity and symmetry of these
structures (Donahue et al. 2016; Lovisari et al. 2017). However, these
indicators can fail for very irregular systems. A cluster progenitor
experiences very different shapes during the merger history and the
configuration of satellite haloes and local environment dramatically
changes. Major mergers can be followed by slow accretion along
filaments until the cluster ends up in a relatively viralized final phase
with a nearly regular and spherical shape. We aim at finding a small
set of morphological parameters that can in principle describes all
the different phases of the merging accretion history.

In this paper, we propose to use the three non-trivial Minkowski
functionals to fully characterize the morphology of spatial structures
(Mecke, Buchert & Wagner 1994; Mecke 2000). We show that very

C© 2021 The Author(s)
Published by Oxford University Press on behalf of Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/3/3911/6125953 by guest on 10 M
arch 2021

http://orcid.org/0000-0002-0003-1873
http://orcid.org/0000-0003-0302-0325
mailto:Carlo.Schimd@lam.fr


3912 C. Schimd and M. Sereno

different morphologies, namely major mergers, multiple mergers,
and filamentary structures can be suitably described by a single set
of geometrically motivated parameters. We calculate analytical ex-
pressions for the triaxial ellipsoid, an n-fused balls model accounting
for non-relaxed clusters undergoing merging, a spiky model with n
cylindrical branches radially connected to a central ball possibly
accounting for filaments of matter feeding a central halo, and a
dumbbell model describing axially-symmetric cluster-pair bridges
(Section 2; details of the calculations reported in the Appendices).
These systems are then classified using the so-called shapefinders
deduced from the Minkowski functionals (Section 3). Conclusions
are addressed in Section 4.

2 MO R P H O L O G Y B Y M I N KOW S K I
FUNCTIONA LS: MODELS

The Minkowski functionals are a complete set of morphological de-
scriptors that characterize the geometry and topology of a continuous
body. In three dimensions, they are its volume (V), surface area (A),
integral mean curvature (H), and integral Gaussian curvature (G) of
the surface, the latter being linearly related to the Euler characteristic
χ that counts the number of connected components minus the number
of tunnels plus the number of cavities (Mecke 2000). According to
a characterization theorem, the Minkowski functionals are the only
valuations invariant under rotations and translations and preserving
additivity and continuity (Hadwiger 1957). These properties along
with the Steiner formula allow the calculation of V0 ≡ V, V1 ≡ A/6,
and V2 ≡ H/3π , the fourth functional V3 ≡ χ = 1 being trivial for
isolated bodies with no tunnels and cavities as here.

2.1 Ellipsoidal model: relaxed clusters

Nearly viriliazed clusters can be conveniently described as ellipsoidal
haloes. For a triaxial ellipsoid E with principal semi-axes a ≥ b ≥ c,
with a defining the polar axis and (b, c) the equatorial plane, namely
with q ≡ b/a and s ≡ c/a, respectively, the intermediate-to-major and
minor-to-major axial ratio, the non-trivial Minkowski functionals are

V E
0 = 4π

3
a3qs, (1a)

V E
1 = π

3
a2s2

[
1 + q

e
F (ϕ,m) + eq

s2
E(ϕ,m)

]
, (1b)

V E
2 = aqs

3π
(I1 + I2), (1c)

in which e = √
1 − s2, m = e−1[1 − (s/q)2], F(ϕ, m) and E(ϕ, m) are

elliptic integrals of first and second kind with sin ϕ = e (Abramowitz
& Stegun 1970), and I1, 2 are dimensionless integrals that we evaluate
numerically in the general case; see equations (A8) in Appendix A.

Analytic limits of the previous equations exist for prolate ellipsoids
of revolution about axis a (a ≥ b = c, so that q = s, m = 0, F = E =
arcsin e), which could account for virialized clusters, and for oblate
ellipsoids of revolution about axes c (a = b ≥ c, so that q = 1, m = 1,
F = arctanh e, E = e), which could account for an intermediate stage
of merging. Following the notation in Schmalzing et al. (1999), one
has

V
E∗

0 = 4π

3
r3λ, (2a)

V
E∗

1 = π

3
r2

[
1 + λf

(
1

λ

)]
, (2b)

V
E∗

2 = 2r

3
[λ + g(λ)] , (2c)

Figure 1. Minkowski functionals iso-contours for an ellipsoid, V E
μ , as

function of the intermediate-to-major and minor-to-major axial ratio, q
= b/a and s = c/a. Volume (solid lines; λ = 0), surface (dashed; λ =
1), and integrated mean curvature (dotted; λ = 2) are shown for values
ranging from (0.05,0.7,0.1) and increasing in steps �Vμ = {0.5, 0.25,
0.01} hμ − 3Mpc3 − μ. The underlying density plot represents the triaxiality
T. Points with error bars are CLASH clusters from Sereno et al. (2018b,
colour-coded by redshift; point size proportional to the mass) and Chiu et al.
(2018, black), softly following the median prolatness–ellipticity relation of
Despali et al. (2014, white long-dashed line).

where f (x) = (arccos x)/
√

1 − x2, and {r = as, λ= 1/s, g(λ) = f(λ)}
for prolate ellipsoids (E∗ = EP ), {r = a, λ = s, g(λ) = λ−1f(λ−1) for
oblate ellipsoids (E∗ = EO).1

Equations (1)–(2) reduce to the familiar expressions for a sphere
S (a = b = c), viz. V S

0 = 4πa3/3, V S
1 = 2πa2/3, and V S

2 = 4a/3.
As illustrated in Fig. 1, the surface area V1 and the integrated

mean curvature V2 are nearly degenerate with the volume V0 for
nearly prolate shapes or orthogonal for nearly oblate structures. They
follow the trend of the triaxiality parameter T = (1 − q2)/(1 − s2),
which distinguishes oblate (T � 0) from prolate (T � 1) structures
and can be used to define three broad morphological classes (Chua
et al. 2019, long dashed lines). Coloured points (size proportional
to the mass, colour-coded by redshift) have been obtained for
the Cluster Lensing and Supernova Survey with Hubble (CLASH)
clusters (Sereno et al. 2018b). Their 3D shape are constrained with
a multiwavelength analysis combining the surface mass density as
determined by gravitational lensing, which probes the size in the
plane of the sky, and X-ray and SZ data, to infer the radial extent
(Sereno 2007). With convenient priors, some less strong constraints
on the 3D shape can be still determined based on lensing alone (Chiu
et al. 2018, black points). These points softly follows the median
prolatness–ellipticity relation of Despali et al. (2014, white long-
dashed line) that fits Lambda cold dark matter (�CDM) N-body
simulations.

1Our results slightly differ from Schmalzing et al. (1999).
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Morphology of relaxed and merging galaxy clusters 3913

2.2 Fused-balls model: merging clusters

Clusters are usually neither relaxed nor isolated. The complex mor-
phology of merging clusters, or a central cluster with satellite haloes
can be conveniently pictured as a group of partially overlapping balls.
In this subsection, we consider first the case of a major merger (N =
2 balls) and then the case of satellite haloes (N > 2 balls).

2.2.1 Major mergers

The Minkowski functionals of two merged balls 2M = B1 ∪ B2

cannot be calculated like for the ellipsoid because the surface is not
regular enough to uniquely define the fundamental form. Instead, they
can be calculated using additivity, Vμ(B1∪B2) = Vμ(B1) + Vμ(B2)
− Vμ(B1∩B2). For two merged balls with unequal radii R and r ≤
R and centres at distance d ≤ R + r, the volume and surface area
are trivial (see also Gibson & Scheraga 1987), while the integrated
mean curvature can be calculated using the Steiner formula; see
Appendix B. One finally obtains

V M
0 = 2π

3

(
R3 + r3 − 1

8
d3

)
+ π

2
(R2 + r2)d + π

4d
(R2 − r2)2,

(3a)

V M
1 = π

3
(R2 + r2) + π

6
(R + r)d + π

6d
(R − r)(R2 − r2), (3b)

V M
2 = 2

3
(R + r + d) − ψ

3
d

√
2
R2 + r2

d2
− 1 −

(
R2 − r2

d2

)2

,

(3c)

with cos ψ = (R2 + r2 − d2)/2Rr. These equations are defined for
non-trivial merging, i.e. as long as the two spheres overlap with no
total embedding (B1∩B2 
= ∅ and B2 � B1, i.e. R − r ≤ d); for non-
overlapping spheres, the correct expression is recovered setting d =
R + r.

The results are illustrated in Fig. 2 as function of the radius of the
smaller ball and separation between the centres, both normalized to
the radius of the larger ball. Note that for major (r � R) and advanced
(d � R) mergers, V0 and V1 are nearly degenerate. As reference, the
values for the major mergers (r ∼ R) from the LC2 catalogue (Sereno
2015) calculated assuming a flat �CDM cosmology with 
m = 0.3
and h = 0.7 and R ≡ R200c are shown, along with the characteristic
splashback (Diemer et al. 2017) and pericentre values estimated for
binary systems at redshift z = 0.3 with main halo mass M200c =
1014h−1M� and secondary halo with 3 or 10 times smaller mass;3

see Table 1.
For balls with equal radius (R = r), the Minkowski functionals of

the resulting body MP are well known:

V
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0 = 4π

3
R3

(
1 + 3d

4R
− 1

16

d3

R3

)
, (4a)

V
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1 = 2π

3
R2

(
1 + d

2R

)
, (4b)

V
MP

2 = 4R

3

(
1 + d

2R

)
− 2R

3

√
1 − d2

4R2
arccos

(
1 − d2

2R2

)
.

(4c)

2We denote Bi ≡ B[xi , R] the ith ball centred in xi with radius R, omitted
for clarity.
3M200c denotes the mass enclosed within a sphere of radius R200c with mean
overdensity 200 times the critical density.

Figure 2. Minkowski functionals iso-contours for major mergers, V M
μ

(equations 3), as function of the smaller ball radius r and distance d from
the major ball with radius R. Volume (solid lines), surface (dashed), and
integrated mean curvature (dotted) levels increase by 10 per cent moving top
right-hand side from the lower values attained for a single ball, V S

μ (for V M
2 ,

also the contours corresponding to 93 and 96 per cent of V S
2 are shown). The

lower (‘total embedding’) and upper (‘no overlap’) triangular regions account
for trivial morphologies of one and two isolated balls, respectively. Points
indicate major mergers from the LC2 cluster catalogue (Sereno 2015, colour-
coded by redshift as in Fig. 1, size proportional to R200c). Filled (empty)
symbols designate a merging subclump at the pericentre (splashback) for a
system at z = 0.3; see Table 1.

Table 1. LC2 merging clusters (Sereno 2015): parameters of two-balls
model (R ≡ R200c, flat �CDM cosmology).

Name Redshift R r d

Abell 1750 0.0678 0.98 ± 0.19 0.85 ± 0.20 0.57 ± 0.06
Abell 901 0.16 0.88 ± 0.15 0.77 ± 0.19 0.85 ± 0.08
Abell 115 0.197 1.13 ± 0.10 1.07 ± 0.11 0.63 ± 0.06
Zw Cl2341 0.27 0.87 ± 0.15 0.86 ± 0.15 0.73 ± 0.07
Abell 1758 0.28 0.95 ± 0.26 0.68 ± 0.17 1.46 ± 0.14
Bullet cluster 0.296 1.91 ± 0.09 1.66 ± 0.09 0.50 ± 0.05
MACS J0025 0.5842 1.15 ± 0.28 1.06 ± 0.23 0.45 ± 0.05
CLJ0102−4915 0.87 1.10 ± 0.05 0.96 ± 0.05 0.52 ± 0.05

M1 = 1014h−1M�, M2 = M1/10:
Splashback � 0.3 1.47 0.68 2.03
Pericentre � 0.3 1.47 0.68 0.20

M1 = 1014h−1M�, M2 = M1/3:
Splashback � 0.3 1.47 0.68 2.03
Pericentre � 0.3 1.47 0.68 0.20

Notes. For comparison (lower part of the table), indicative values for the
splashback and pericentre phase of some major merger. Lengths in h−1Mpc.

with limits V S
0 = 4πR3/3, V S

1 = 2πR2/3, and V S
2 = 4R/3 when d

= 0, i.e. when MP becomes a sphere, S.

2.2.2 Multiple mergers.

Equations (3) can be extended to the easiest configuration for multiple
merging, i.e. a central ball (halo) B of radius R intersecting n smaller
balls (satellites) Bi of radius ri, with centres at distance di from
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3914 C. Schimd and M. Sereno

Figure 3. Minkowski functionals of merging models Mn with n = 3, 5 satellites (rows 1–2 from the top) and spiky models Sn with n = 1, 2, 4 filaments (rows
3–5), illustrated by topologically equivalent bodies in the top left-hand corner of the right-hand panels. From the left- to right-hand side: volume, surface, and
integrated curvature, normalized to the values of the central ball. In Mn, the satellite balls Bi have different radius ri and are at distance di∝d from the central
ball B (see legends); lines with increasing thickness would represent subsequent stage of merging, with satellites going closer to B. In Ss the cylindric filaments
have bases of radius ri and length �i∝� (see legends); and thicker lines represent later stages of gravitational evolution. For the Ss models, V2 does not depend
on the radius of filaments but only on their length. Lengths are in units of the central ball radius R.

the centre of B and not mutually intersecting (Bi∩Bj = ∅; i, j =
1, . . . , n; N = n + 1). The Minkowski functionals of the simply-
connected resulting body Mn = B ∪ ⋃n

i=1 Bi (so M1 ≡ M) are
trivially obtained by additivity; see Appendix C. The two top-line
panels in Fig. 3 illustrate the results for n = 3 and 5.

2.3 Spiky model: filaments feeding clusters

Massive haloes form at the highest density nodes of the cosmic web.
Even in the absence of major mergers, dark matter is continuously
accreting along filaments connecting the nodes (e.g. Eckert et al.
2015; Connor et al. 2018). We can approximate such spiky geometry
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Morphology of relaxed and merging galaxy clusters 3915

Table 2. Observed cluster-pair bridges of single (upper table) or stacked
(lower table) systems.

Cluster/data set Redshift R D ρ

A222–A223 (•) 0.21 1.2 15 ± 3 0.6
A399–A401 (�) 0.073 1.70 3 1.52 ± 0.09
A21 – PSZ2 G114.9 (�) 0.094 1.36 4.2 0.92
SDSS/DR17 (LRG) 0.2–0.5 0.5–1 6–14 � 1
BOSS + CFHTLenS 0.3–0.6 1.25 7.1 ± 1 1.25
SDSS/DR12 + Planck 0–0.4 1.35 6–10 ≤0.5
CMASS + Planck ∼0.55 0.5–1 6–14 ≤2.5

Notes. The compilation is restricted to clusters pairs with similar radius R
≈ r = r200, separated by D and with filament radius ρ. Lengths in h−1Mpc.

by a ball B of radius R attached to n distinct, i.e. not mutually
intersecting cylinders Ci (i = 1, . . . , n) radially joined to B, each
with length �i and basis with radius ri lying on the surface of B. Using
additivity, the Steiner formula, and equation (B2), the Minkowski
functionals of the resulting body S̄n = B ∪ ⋃n

i=1 Ci are

V
S̄n

0 = π

3
(2 − n)R3 + π

∑
i

[
r2
i �i + pi

3

(
3R2 − 2Rpi − p2

i

)]
,

(5a)

V
S̄n

1 = π

3
(2 − n)R2 + π

6

∑
i

(
r2
i + 2ri�i − 2Rpi

)
, (5b)

V
S̄n

2 = 2

3
(2 − n)R + 1

3

∑
i

(
�i + 2pi + ri arcsin

ri

R

)
, (5c)

in which pi = (R2 − r2
i )1/2 is the distance from the centre of B to the

ith spherical cap bounded by the cylinder Ci. The condition Ci∩Cj

= ∅ is possible if approximately
∑

i r2
i � 4R2.

Equations (5) are simpler but still keep the essential information
if the free heads of cylinders are not flat but spherical caps with the
same curvature radius as the central ball, i.e. Li = B ∩ Ci , so that
Vμ(Sn) = Vμ(B) + ∑

i Vμ(Ci). The Minkowski functionals are then

V
Sn

0 = 4π

3
R3 + π

∑
i

r2
i �i , (6a)

V
Sn

1 = 2π

3
R2 + π

3

∑
i

ri�i , (6b)

V
Sn

2 = 2

3
R + 1

3

∑
i

�i . (6c)

The bottom rows of Fig. 3 illustrate results for n = 1, 2, 4.

2.4 Dumbbell model: cluster-pair bridge

Cluster of galaxies may reside in superclusters still not in equilibrium.
In the simpler configuration, major haloes are connected through
thick filaments (e.g. Werner et al. 2008; Dietrich et al. 2012; Planck
Collaboration VIII 2013; Bonjean et al. 2018, Table 2, rows 1–3),
also detected by stacking techniques (Clampitt et al. 2016; Epps &
Hudson 2017; Tanimura et al. 2019; de Graaff et al. 2019, Table 2,
rows 4–7).

The morphology of an axially-symmetric body defined by two
balls connected by a cylinder, D = B1 ∪ B2 ∪ C, can be deduced
from the previous equations using additivity and noting that the sum
of the Minkowski functionals of the two spherical caps chopped by
the cylinder bases, L1,2 = B1,2 ∩ C, are equivalent to the Minkowski
functionals of the lens L = L1 ∪ L2 as reported in Appendix B.
After some algebra and recognizing the two-fused balls model, one
obtains Vμ(D) = V M

μ + Vμ(C). The exact, though cumbersome,

Figure 4. Minkowski functionals iso-contours for the dumbbell model D
with balls of same radius R as function of distance D between the balls’
centres and of radius ρ of the cylindric bridge. Volume (solid lines; λ = 0),
surface (dashed; λ = 1), and integrated mean curvature (dotted; λ = 2) are
shown for values ranging from the smaller as indicated and in steps �Vμ = {2,
0.5, 0.5} Mpc3 − μ moving rightward. Data points are described in Table 2.

mathematical expression combines equations (3) for two balls of
radius R and r separated by an effective distance d = (R2 − ρ2)1/2

+ (r2 − ρ2)1/2, and the well-known Minkowski functionals of a
cylinder with circular basis of radius ρ and height D − d, with D
the actual distance between the centres of B1 and B2. An illustrative
example of Minkowski functionals iso-contours for balls with same
radius R is shown in Fig. 4 as function of the length and radius of the
cylindric bridging filament. For relatively small bridge lengths (D ∼
2R), the functionals are quite degenerate. For larger radii, degeneracy
is broken. A compilation of systems that can be approximated by this
geometry are reported for comparison; see Table 2.

A more advanced configuration is obtained by replacing the cylin-
der by a truncated cone P with circular bases of radius ρ1 and ρ2 and
height h = D − (R2 − ρ2

1 )1/2 − (r2 − ρ2
2 )1/2; see Appendix D. The

Minkowski functionals are Vμ(DP ) = Vμ(B1) + Vμ(B2) + Vμ(P ) −
Vμ(L1) − Vμ(L2), with the functionals for P obtained from equa-
tions (D1-D3). It is not difficult to further generalize this model by
adding two additional cylindric filaments that protrude from the two
haloes in opposite directions. These two haloes can be regarded as
local clumps of matter embedded in a single, bent cosmic filament
similar to the A3016–A3017 system (Chon et al. 2019). Finally,
note that a pile of truncated cones with matching bases can describe
axially-symmetric filaments with varying thickness, well suited for
systems such as the one recently reported by Umehata et al. (2019)
and Herenz, Hayes & Scarlata (2020).

2.5 Mass assembly history and morphology

During the late stage of evolution before virialization, satellite haloes
are closer to the main halo. This tends to accrete mass at merging
rate and with time-scale depending on the epoch, initial mass, and
statistics of the primordial density field (Bond et al. 1991), mass
and kinematic of subhaloes (e.g. Zhao et al. 2003), and tidal forces
(Lapi & Cavaliere 2011), which are possibly conditioned by dark
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3916 C. Schimd and M. Sereno

Figure 5. Shapefinder isocontours for merger model M, where two balls with radius R and r are separated by d. Left-hand panel: H1, H2, H3 isocontours
in units of the values attained for a unit ball S, i.e. HS

1 = HS
2 = HS

3 = 1, increasing by �Hi/H
S
i = (0.025, 0.1, 0.05) rightward. H1 and H2 are minimum

when the two balls do not overlap, respectively, for r/R ∼ 0.89 and 0.41; H3 is minimum for non-trivial overlap, at (r/R, d/R) ≈ (0.54, 0.84). Right-hand panel:
planarity (filamentarity) isocontours range in [−0.025, 0.125] ([−0.15, 0.3]) in steps of 0.025 (0.05), crossing the vanishing value valid for a ball or through
total embedding. Symbols as in Fig. 2.

energy (Pace et al. 2019). The filamentary structures feeding clusters
tend to become shorter and thinner (e.g. Cautun et al. 2014), and
the connectivity of the more massive hence largest and latest formed
haloes decreases over time (Choi et al. 2010; Codis, Pogosyan &
Pichon 2018; Kraljic et al. 2020). Since Minkowski functionals
account for the non-trivial geometrical and topological content of
fused bodies despite their evolutionary stage, relaxed or not, one
expects that they correlate with the dynamical state of galaxy clusters.
This claim is supported by the results we obtained with idealized
models.

As shown in Fig. 3 (top panels), while the volume of merging
models Mn is mainly sensitive to the relative size (radius) of the
satellites, area and integrated mean curvature strongly depend also
on their relative distance from the main halo, lifting the degeneracies.
Overall, late-time structures are more compact i.e. occupy smaller
volume, cover smaller area, and have smaller intrinsic curvature
than at early time (later stages of the gravitational evolution are
represented by thicker lines and by solid-dashed-dotted sequence).

The morphology captured by Minkowski functionals for spiky
models Sn (Fig. 3, bottom rows) is similar to merging models:
Regardless of the number of filaments attached to the central ball, the
volume primarily depends on the thickness (radius) of filaments, the
area is likewise sensitive to the relative length of filaments, �i, while
integrated mean curvature only depends on �i. Again, the overall
amplitude of Minkowski functionals decreases for late-time mor-
phologies, converging towards the values of the central main cluster.

A numerical study based on N-body simulations is needed to quan-
titatively assess the correlation between the full set of Minkowski
functionals and the relaxation state of these structures. It will be
of interest to evaluate the ability of these statistics to distinguish
between ‘stalled’ and ‘accreting’ haloes, which are located at the
nodes of a network of respectively thin and thick filaments feeding
them (Borzyszkowski et al. 2017).

3 C LASSI FI CATI ON BY SHAPEFI NDERS

Sahni, Sathyaprakash & Shandarin (1998) introduced the thickness
H1 = V0/2V1, width H2 = 2V1/πV2, and length H3 = 3V2/4 of
isodensity contours, dubbed shapefinders, to investigate in a non-
parametric way the size and shape of the matter density field above
or below a given threshold on large scales. Shandarin, Sheth & Sahni
(2004) used these statistics for voids and superclusters. We employ
the shapefinders to attempt a classification of the morphology of
galaxy clusters. The shapefinders are geometrically and physically
motivated and can characterize all the different phases of the
merging accretion history, or, in a complementary view, all the halo
configurations that populate the universe at a single cosmic time.

The dependence of shapefinders on the parameters of models is
illustrated only for the two-fused ball model, M, as prototype for
major mergers and fully accounted for by two parameters only, i.e.
the ratio of balls radii r/R and the distance between balls in units
of the major ball radius, d/R. Fig. 5 (left-hand panel) suggests that
major-merging clusters from the LC2 catalogue, which share similar
geometric scales r or d, can be distinguished by the values of H1, H2,
and H3, whose iso-contours are markedly orthogonal in different part
of the (r, d) parameter space. For reference, the two major-merging
systems with secondary haloes orbiting at the splashback radius of
the main halo and having 3 and 10 times smaller mass (upper and
lower empty triangles, respectively) differ by about 16, 12, and 6 per
cent in volume, surface, integrated mean curvature, corresponding to
a 4, 16, and 6 per cent difference in H1, H2, and H3, respectively.

The so-called planarity P = (H2 − H1)/(H2 + H1) and filamentarity
F = (H3 − H2)/(H3 + H2) are less suitable shapefinders to classify the
systems considered in this study, especially the ‘stellar’ models Mn

and Sn; here the words ‘planarity’ and ‘filamentarity’ are equivocal.
None the less, for the two-fused ball model, P and F can differ by
about ±0.15 from zero, which is the value for a ball. A Blaschke
diagram based on (P, F) (see e.g. Schmalzing et al. 1999) could
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Morphology of relaxed and merging galaxy clusters 3917

Figure 6. Classification by shapefinders (H1, H2, H3) of ellipsoidal triaxial, merging, spiky, and dumbbell models in two projections (left- and right-hand
panels; see Section 3 for values). Top panels: merging, spiky, and dumbbell models have central or major ball with radius R = 1 or 2h−1Mpc. Correspondingly,
they have H1 ≈ 1 or 2h−1Mpc and H2 � 1 or 2h−1Mpc. Bottom panels: zoom on models with major ball with R = 2h−1Mpc.

be therefore an alternative interesting diagnostic to classify more
realistic systems.

The geometrical models presented in Section 2 illustrate the
potentiality of the classification scheme based on (H1, H2, H3), which
can be applied to clusters of galaxies or any astrophysical or physical
system with non-trivial geometry. Fig. 6 shows the three projections
of the (H1, H2, H3) parameter space populated with triaxial ellipsoids
E (with axes a, b, c ∈ [1, 5] h−1Mpc), merging models Mn with n
= 1, 2, 3 satellites (balls with radius ri ∈ [R/2, R] at distance d ∈
[R, 2R] from the central ball with radius R = 1, 2h−1Mpc), spiky
models Sn with n = 1, 2, 3 filaments (cylinders with radius ri ∈
[R/4, 3R/4] and length �i ∈ [1, 5]h−1Mpc, feeding a central ball
with radius R = 1, 2 h−1Mpc), and dumbbell models Dh (major
ball with radius R = 1, 2 h−1Mpc, minor ball with radius r ∈
[R/2, R], cylindric bridge with radius ρ ∈ [R/4, 3R/4] and height
h = 5, 10 h−1Mpc).4

The triaxial ellipsoids E (shown only in the left-hand panels)
extend over the broadest region of the parameter space, quite well
separated from the other models. For fixed width H2, the maximum
thickness H1 and minimum length H3 is achieved for prolate and
oblate ellipsoids, which are almost superposed. Instead, as shown in

4Length units are here irrelevant since only ratios do matter; in Fig. 6, we
adopt h−1Mpc as common practice in cosmology.

Fig. 1, the same value of the Minkowski functionals corresponds to
different values of the triaxiality parameter, viz. Vμ are orthogonal
to T so bringing less discriminating power than the shapefinders.

All but the E models are approximately centred around a value
of H1 that is equal to the radius R of the central or major ball.
Disregarding the unavoidable degeneracies between models, for fixed
value of R (see the right-hand panels, showing only models with R =
2h−1Mpc), there is a clear trend of H2 that increases with the number
n of satellites in merging models Mn, while it only mildly decreases
with the number n of cylindric filaments (connectivity) of spiky
models Sn. The connectivity is instead more evident in the (H2, H3)
plane, increasing on average with H3. A similar trend occurs for the
Mn models, with larger integrated mean curvature or H3 occurring
for systems with more satellites.

The Minkowski functionals support these conclusions. As sug-
gested by Fig. 3 (rows 1–2), while the volume (V0) and, to smaller
extent, the surface (V1) of merging systems Mn mainly inform
about the size of the central ball and that of the largest satellite,
the integrated mean curvature (V2) is sensitive also to the smaller
satellites even when n is small, catching both their size and distance
from the central ball. For Sn models (rows 3–5), V0 and V1 equally
respond to the thickness and lengths of the filaments, while the slope
of V2 as function of the typical length increase on average with the
connectivity n; in this case, the classification in the (H2, H3) plane
seems more selective.
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Figure 7. Example of shapefinder classification of observed systems (projections as in Fig. 6): triaxial haloes (Sereno et al. 2018b, discs, colour-coded by
redshift as in Fig. 1), major mergers (LC2 catalogue by Sereno 2015, squares, colour-coded by redshift as in Fig. 2), dumbbell systems (black symbols and
shaded regions; see Table 2 and Fig. 4). For reference, major merging models M are shown, all having main halo with radius R = 0.1–3h−1Mpc and secondary
halo with radius r located at distance d such that (r, d) = (R, 0.3R) (i.e. close haloes with same radius; solid line), (0.5R, R) (dashed), and (R, 1.5R) (i.e. distant
haloes with same radius; dot-dashed). Triaxial haloes by Sereno et al. (2018b) nicely fit the ellipsoidal prolate model with (a, b, c) = (1 h−1Mpc, b, b), b ∈ [0.1,
1] h−1Mpc in the (H2, H3) plane (dotted line) but not in the (H1, H2) plane.

Dumbbell models Dh attain the largest value of H1, which
increases with the length h of the bridge. Consistently with Vμ (see
Fig. 4), the width H2 is mainly sensitive to the radius of the smaller
ball, while the length H3 is strongly responsive to the bridge length
almost regardless the other scales of the dumbbell.

Fig. 7 illustrates the ability of shapefinders to separate the observed
systems presented in the precedent sections. Triaxial ellipsoids by
Sereno et al. (2018b, discs), major mergers of the LC2 catalogue
Sereno (2015, squares), and cluster-pair bridges (see Table 2, symbols
and large squares) nicely occupy different positions in the parameter
space.

4 D I S C U S S I O N A N D C O N C L U S I O N S

The forthcoming generation of imaging and spectroscopic surveys
carried out with DESI, WEAVE, 4MOST, Rubin Observatory, Euclid,
Roman Space Telescope, eROSITA, or SKA will collect thousands
of new galaxy clusters and proto-clusters at low and high redshift
and with a considerable spatial resolution, allowing us to establish
a firm relationship between their complex morphology and the
mass assembly history. The recent exquisite observations operated
by CFHT/Megacam, VLT/MUSE, or ALMA already support the
introduction of new spatial statistics besides the traditional ones
calculated from the mass or inertia tensors (ellipticity, triaxiality,
etc.), which are well suited for relaxed or poorly resolved systems
but less appropriate to describe merging clusters or their filamentary
environment.

The usual morphological parameters can be impractical for diverse
samples. Axial ratios and inertia eigenvectors provide a very accurate
and physically motivated description of regular and approximately
triaxial haloes, but they can fail to properly describe major mergers or
bridges and filaments. In some sense, classic morphological schemes
usually adopted in cluster astronomy can be properly used only after
the shape of the halo as been already assessed. One first determines
the class that the cluster belongs to and then adopts the relevant shape
classifier.

The shapefinders based on the Minkowski functionals, introduced
by Sahni et al. (1998) to investigate the morphology of the large
scale structure and dubbed thickness (H1), width (H2), and length
(H3), provide instead a small set of parameters that can properly

describe very diverse morphologies, possibly correlating with the
entire accretion history of the halo. This study assesses the capability
of Minkowski functionals and shapefinders to discriminate between
ellipsoidal, merging, spiky, and dumbbell morphologies, providing
explicit formulas for simplified geometries.

Equations (1) for triaxial ellipsoids E and (3) for two-fused balls
M are the main analytical result of this study; to our knowledge,
the formulas for their integrated mean curvature, HE and HM, are
new in the literature. Using the additivity of Minkowski functionals
and the Steiner formula, one can generalize the model to n merging
balls (satellites), Mn. Analytical expression for axially-symmetric
filaments with varying thickness, equations (D1)–(D3), are pivotal to
build spiky geometries Sn accounting for filaments feeding a central
halo or cluster-pair bridges D.

It is important to remind that the (scalar) Minkowski functionals
for the merger and spiky models, Mn and Sn, in which the different
satellites or branches do not mutually overlap, do not supply any
information about the relative orientation of the substructures. The
morphology of anisotropic bodies can be instead distinguished by
the vector and tensor-valued Minkowski functionals (e.g. Beisbart,
Valdarnini & Buchert 2001; Beisbart et al. 2002), which can be
interpreted as generalization of the moment of inertia of the body.
Consistently, the so-called planarity and filamentarity shapefinders
deduced from (H1, H2, H3) would be misleading for the simplified
models considered here, thus not used for the classification.

Not surprisingly, as shown in Fig. 3, the Minkowski functionals
respond to the distance and size of satellites, to the connectivity
of central haloes, and to the thickness of feeding filaments. These
geometrical and topological properties trace the growth of structures
and have an impact on the physical properties of galaxies in the
nodes of the cosmic web (Choi et al. 2010; Codis et al. 2018; Kraljic
et al. 2018, 2020). Reasonably enough, Minkowski functionals
and shapefinders are therefore correlated with the mass assembly
history both in the dark and gaseous components and could serve as
diagnostics to investigate the relationship between local morphology
and global dynamics.

Figs 6 and 7 summarize this study. They show how a simple three-
dimensional parameter space is adequate to describe the full variety
of cluster. Thought not fully lifting the degeneracies necessarily
occurring between very different morphologies, (H1, H2, H3) can
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be effectively used as classifiers provided at least some effective
radius of the major structure is estimated.

This study is a proof-of-concept to illustrate the potential of
Minkowski functionals and shapefinders for clusters studies. The
full practical potential of this approach in cluster morphological
analysis has still to be assessed. The toy models we considered can
capture some of the main features of a diverse sample of clusters
but likely fail to describe more complex configurations that shows
up in the observed sky or in numerical simulations. In this case,
alternative computation techniques shall be used. Depending on the
discrete or continuous nature of the mass tracers, the underlying
Minkowski functionals can be estimated using the so-called germ-
grain or excursion set models (Mecke et al. 1994; Schmalzing et al.
1999), i.e. by dressing the point-processes (e.g. galaxies or subhaloes)
with balls of fixed radius, whose union forms the continuous body,
or considering the iso-contours of suitably smoothed random field
(e.g. the density or temperature of the cluster), respectively, using
the radius of balls or the threshold value defining the iso-contours as
diagnostic parameter.

We showed the potential of shapefinders as morphological clas-
sifier in 3D. The three-dimensional shape of galaxy clusters can be
constrained with joint multiwavelength analyses combining lensing,
X-ray, and SZ (Sereno et al. 2018b) or deep spectroscopic campaigns
(Rosati et al. 2014; Finoguenov et al. 2019; Kuchner et al. 2020),
which unveil the third dimension orthogonal to the projected sky.
The data sets required by these analyses can be very expansive and
the full 3D analysis of galaxy clusters is usually not feasible for most
of the known haloes. Even though this situation can change with
the next generation surveys and instruments, it might be useful to
consider 2D shapefinder classes in the projected space. This could
be more useful in the context of large surveys.

Finally, it is worth to stress that morphology alone cannot unam-
biguously determine the degree of equilibrium of a halo. Apparently,
morphological regular clusters can be unrelaxed (Meneghetti et al.
2014). Any possible correlation between shapefinders and dynamical
state of the clusters shall require a more accurate investigation, also
based on N-body simulations.
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Chandra C. H., 2018, ApJ, 852, 93
Werner N., Finoguenov A., Kaastra J. S., Simionescu A., Dietrich J. P., Vink

J., Böhringer H., 2008, A&A, 482, L29
Zhao D. H., Mo H. J., Jing Y. P., Börner G., 2003, MNRAS, 339, 12

APPENDIX A : INTEGRATED MEAN
C U RVAT U R E O F A N E L L I P S O I D

Following Poelaert, Schniewind & Janssens (2011), an ellipsoid
described by

X2

a2
+ Y 2

b2
+ Z2

c2
= 1, (A1)

with principal semi-axes a ≥ b ≥ c and central Cartesian coordinates

X = a cos θ, (A2)

Y = b sin θ cos φ, (A3)

Z = c sin θ sin φ, (A4)

written in terms of the eccentric anomalies θ and φ, has local mean
curvature

Hloc(θ, φ) = h3(a2 + b2 + c2 − R2)

2a2b2c2
, (A5)

with

h = abc√
b2c2 cos2 θ + a2(c2 cos2 φ + b2 sin2 φ) sin2 θ

(A6)

being the shortest distance (‘height’) from the centre to the tan-
gent plane to the ellipsoid at the point considered and R =√

X2 + Y 2 + Z2 the radius to this point upon the ellipsoid surface
(see Fig. A1). The local Gaussian curvature is Gloc = h4/a2b2c2.

The mean curvature integrated over the surface is

H ≡ abc

∫ 2π

0
dφ

∫ π

0
dθ

sin θ

h
Hloc = abc

a2
(I1 + I2), (A7)

with

I1 =
∫ 2π

0

a2 + k2

k2

arctanh U

U
dφ, (A8a)

I2 =
∫ 2π

0

a2 − b2 − c2 − k2

k2

(
1

U 2
− arctanh U

U 3

)
dφ, (A8b)

where U 2 = 1 − (b2c2/a2k2) ≤ 1 and k2 = b2sin 2φ + c2cos 2φ.
The dimensionless integrals (A8) are evaluated numerically. Analytic
limits exists for prolate and oblate ellipsoids (see the main text).

APPENDI X B: INTEGRATED MEAN
C U RVATU R E O F T WO M E R G E D BA L L S

The integrated mean curvature of M = B1 ∪ B2 is calculated us-
ing V2(B1∪B2) = V2(B1) + V2(B2) − V2(B1∩B2). The last term
is derived from the Steiner formula applied to parallel lens Lε ,
namely the uniform coverage of the lens L ≡ B1 ∩ B2 by balls
with radius ε. As illustrated in Fig. B1, Lε results in the union
of L with two dihedra D1 and D2 of thickness ε and opening
angles, respectively, θ1 and θ2, and a wedged torus T centred on
O and with cross-section (π − θ1 − θ2)ε2. According to the Steiner
formula, its volume V (Lε) ≡ V (L) + V (D1) + V (D2) + V (T ) is
equal to V (L) + A(L)ε + H (L)ε2 + (4π/3)ε3 (Mecke 2000), i.e.
a fourth-order polynomial in ε with coefficients proportional to
the Minkowski functionals; the integrated mean curvature H (L)
corresponds to the sum of the terms of V (Lε) proportional to ε2.

The volume of the spherical dihedron D1 is

V (D1) = 2π

(
1 − p

R1

)(
R2

1ε + R1ε
2 + ε3

3

)
, (B1)

Figure A1. Local mean curvature Hloc of triaxial ellipsoids (inset) with axes ratio (b/a, c/a) = (0.6, 0.6) (left-hand panel), (0.6,0.4) (centre panel), and (0.6,0.2)
(right-hand panel) as function of the angles measured from the centre of the body and spanning a quarter of the equatorial plane (solid line) and of the two
perpendicular meridian planes (dashed, dotted; same). For the axially symmetric, prolate ellipsoid (left-hand panel), two directions are equivalent. Note the
different range of values of Hloc.
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Morphology of relaxed and merging galaxy clusters 3921

Figure B1. Section of two fused balls B1 and B2 with centres separated by
a distance r and radius R1 and R2. Their intersection L ≡ B1 ∩ B2 forms a
‘bi-concave lens’ (light grey). Covering L with balls with radius ε (only two
are shown, dotted), one obtains the parallel lens Lε (dashed), which results
in the union of two axially-symmetric dihedra D1 and D2 glued to a wedged
torus (sections T and T

′
in dark grey).

with p ≡ OO1 = (R2
1 − R2

2 + r2)/2r the distance from the centre of
B1 and the centroid of the lens and r ≡ O1O2. A similar expression
holds for V(D2) replacing R1 by R2 and p by r − p. The volume of
the wedged torus T is

V (T ) = π(π − θ1 − θ2)ρε2 + 2π

3
(cos θ1 + cos θ2)ε3, (B2)

with ρ = (R2
1 − p2)1/2 its major radius, cos θ1 = p/R1, and cos θ2 =

(r − p)/R2. The Steiner formula finally yields

V (L) = π

12
r3 − π

4

�4

r
− π

2
r�2 + 2π

3

(
R3

1 + R3
2

)
, (B3)

A(L) = 2π�2 − πr(R1 + R2) − π

r
(R1 − R2)�2, (B4)

H (L) = 2π(R1 + R2 − r) + πψ

√
2�2 − r2 − �4

r2
, (B5)

in which cos ψ ≡ cos (π − θ1 − θ2) = (�2 − r2)/(2R1R2), �2 =
R2

1 + R2
2 , and �2 = R2

1 − R2
2 . All these equations are valid for non-

trivial intersection, i.e. overlap with no embedding or |r − R1| ≤
R2.

A P P E N D I X C : MI N KOW S K I F U N C T I O NA L S O F
THE MULTIPLE-MERGERS MODEL M∗

n

The Minkowski functionals of M∗
n = B ∪ B1 ∪ · · · ∪ Bn for i = 1,

. . . , n satellites with radius ri < r, not mutually overlapping, and
avoiding trivial embedding (|di − r| ≤ ri) are

V S∗
0 = 2π

3
(2 − n)r3 + 2π

3

∑
i

(
r3
i − 1

8
d3

i

)

+ π

2

∑
i

di

(
r2 + r2

i

) + π

4

∑
i

(
r2 − r2

i

)2

di

, (C1a)

V S∗
1 = π

3
(2 − n)r2 − π

3

∑
i

r2
i

+π

6

∑
i

di(r + ri) + π

6

∑
i

(r − ri)
(
r2 − r2

i

)
di

, (C1b)

V S∗
2 = 2

3
r + 2

3

∑
i

(ri + di)

−1

3

∑
i

ψidi

√
2
r2 + r2

i

di

− 1 −
(

r2 − r2
i

d2
i

)2

, (C1c)

with cos ψi = (r2 + r2
i − d2

i )/2rri . The condition Bi∩Bj = ∅ is
approximately realized if the surface covered by the basis of
the n balls does not exceed the surface of the central sphere,∑

i[(r
2 − r2

i + d2
i )/(2di)]2 � 4r2.

A P P E N D I X D : MI N KOW S K I F U N C T I O NA L S O F
THE D UMBBELL MODEL DP

The dumbbell DP = B1 ∪ P ∪ B2 resulting from the union of two
balls Bi (i = 1, 2) bridged by a truncated cone P (Fig. D1)
has Vμ(DP ) = Vμ(B1) + Vμ(B2) + Vμ(P ) − Vμ(L1) − Vμ(L2). The
Minkowski functionals of Li ≡ Bi ∩ P and P are calculated as
proportional to εμ (Steiner formula) using equations (B1) and (B2).
The non-trivial result for P are

V (P ) = πρ2
1h − πρ1h

2 tan θ + π

3
h3 tan2 θ, (D1)

A(P ) = π
(
ρ2

1 + ρ2
2

) + 2πh(ρ1 cos θ + h sin θ )

+π
(
ρ2

2 − ρ2
1

)
sin θ, (D2)

H (P ) = πh cos2 θ + π(π − 2θ )
ρ1 + ρ2

2
− π

ρ2 − ρ1

2
sin 2θ, (D3)

where ρ1 and ρ2 are the radii of the minor and major circular basis
of P, h its height, and tan θ = (ρ2 − ρ1)/h. For θ = 0, one recovers
the known Minkowski functionals for a cylinder C with basis ρ ≡
ρ1 = ρ2 and height h, i.e. V(C) = πρ2h, A(C) = 2πρ(ρ + h),
H(C) = π (h + πρ). For h = 0, the second and third Minkowski
functionals further yield the area and the integrated mean curvature
(or 2/π × perimeter) of a two-faces two-dimensional disc embedded
in a three-dimensional space.

Figure D1. Section of dumbbell model with axially-symmetric conic fil-
ament P. The intersection of the two balls B1 and B2 with P yields two
‘flat-concave lenses’ L1 and L2 (light grey).
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